Recently, between a daughter burbling about the chemical transferability of learning and a character (in my new novel) pushing the boundaries of artificial intelligence, I’ve been thinking a lot about learning.
As a layperson, I’ve thought of learning mainly in terms of younger learning – generational transfer of social convention and disciplinary knowledge, which, in environments that adequately balance boundaries and freedom, and nourishment and stress, develop capacity for higher-order connections, analogy, abstraction, and “extra-order” creativity – and adult learning which uses and further develops the higher-order capacities. All of this presumes that learning is a humanistic and social process. Of course, our physiology allows this learning, but, until recently, I didn’t seriously consider the possibility that learning might be, fundamentally, a physiological and/or logical process. Today, however, with explorations of the chemical transferability of learning, increasing understanding of the structure and activity of the brain, and the development of sophisticated algorithms for pattern recognition and unsupervised learning by machines, I, along with many others, am fascinated by, and curious about, the chemical and mechanical nature of learning. Snap! Palpably, truly, my brain shut a mental trap around the word “curiosity.” Aha. Where would curiosity figure in the chemical transfer of learning? Can artificially intelligent curiosity match human curiosity? What is the relationship of curiosity to learning and intelligence? So far explorations of the chemical transfer of learning are restricted to conditioned learning, so the question of curiosity is very far from arising. But I think we can ask about curiosity in machine learning. Curiosity in mammals includes both instrumental, problem-solving, motivated curiosity and (pleasurably) idle curiosity. Both kinds can lead to learning. The first sounds amenable to algorithmic machine learning. The second, pleasurably idle curiosity, sounds fundamentally inconsistent with algorithmic processes, but certainly one could code a machine to simulate idle curiosity. One could have an “idle” curiosity algorithm, with a cosmetic repertoire of pleasure indicators, linked to a mechanical random number generator, and one could code for recording and learning from the effects of the random, if not truly idle, curiosity. I think it could look pretty good and the machine might even derive quantitatively and qualitatively better learning than I do from my idle curiosity. So where would that leave me? At the limit, the machine cannot have idle curiosity. That does leave me (and you) with a fertile question: what then can the machine never have in terms of learning? (I think one could have a strongly analogous line of inquiry about self-consciousness. Perhaps in a future post. Or in a guest post?) Note: In this note, I use “learning” and “intelligence” to denote mainly mental activity (descriptive, analytical, creative, etc.). I am not looking in any primary way at “muscle memory,” emotional intelligence, etc., though, clearly, all of these greatly affect any person’s overall capacity and process of learning and “intelligence.” I also do not look at a crucial form of curiosity among mammals in general, but, most strikingly, among humans – relational curiosity. Related content: a fascinating article on gender and AI/Robots.
3 Comments
Meenakshi
10/30/2015 07:56:58 am
In the post above, I make a very strong assumption that human curiosity can be “just” idle, unmotivated. In fact, arguably, human idle curiosity always has some motivation, some history, so is the difference from machines simply a difference of thresholds? The obvious path that I have avoided in this post is that the element in human learning that machines cannot replicate is precisely the emotional/relational core in humans that inevitably influences human curiosity and learning, even in the most objective of circumstances. I’ve avoided it because I think, quite apart from the emotional/relational core, there is still more to be recognized about humans’ intellectual ability to engage with ambiguity, uncertainty, and unknowns, the phenomenon of “leaps of faith,” if you will.
Reply
Steve Gelb
11/6/2015 05:11:13 pm
There is a recent (2014) book called The Teaching Brain: An Evolutionary Trait at the Heart of Education, that looks at the teaching side of the equation from a biological, developmental perspective. I'm glad to gift you my copy if you're interested.
Reply
Meenakshi
11/6/2015 06:22:59 pm
Interesting. Bring it next time we meet and let’s discuss it.
Reply
Your comment will be posted after it is approved.
Leave a Reply. |
AuthorMeenakshi Chakraverti Archives
December 2023
Categories
All
|